Eigenvalue Estimates on Quaternion-Kähler Manifolds

نویسندگان

چکیده

We prove lower bound estimates for the first nonzero eigenvalue of Laplacian on a compact quaternion-Kähler manifold. For closed or Neumann case, bounds depend dimension, diameter, and scalar curvature, they are derived as large time implication modulus continuity solutions heat equation. Dirichlet we establish that inradius, second fundamental form boundary, via Laplace comparison theorem distance to boundary function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kähler (& Hyper-kähler) Manifolds

These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short introduction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces. However, they also include other interesting results not related to K3 sur...

متن کامل

Tensor supermultiplets and toric quaternion - Kähler geometry †

We review the relation between 4n-dimensional quaternion-Kähler metrics with n + 1 abelian isometries and superconformal theories of n + 1 tensor supermultiplets. As an application we construct the class of eight-dimensional quaternion-Kähler metrics with three abelian isometries in terms of a single function obeying a set of linear second-order partial differential equations. Talk given by F.S...

متن کامل

Some Remarks on Quaternion-hermitian Manifolds

Nearly-quaternionic KK ahler manifolds of dimension at least 8 are shown to be quaternionic KK ahler. Restrictions on the covariant derivative of the fundamental four-form of a semi-quaternionic KK ahler are also found.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2023

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-022-01141-5